首页 > 财经 > 知识 > 股票中什么是量化交易法则,罗宾量化交易法的核心内容是什么

股票中什么是量化交易法则,罗宾量化交易法的核心内容是什么

来源:整理 时间:2024-11-14 10:32:35 编辑:双城财经 手机版

1,罗宾量化交易法的核心内容是什么

期待看到有用的回答!
罗宾老师的交易方法的确很奇妙,在寻找入场点和出场点上都十分的精准,但是他的核心技术肯定不会对外公布的,你要想知道的话只能去参加他的高级班看看能不能学到。望采纳,谢谢。

罗宾量化交易法的核心内容是什么

2,什么是量化交易未来前景如何知道的讲讲

量化就是就是具体化,使用模型来进行程序化交易。 打个通俗的比方:一般的人炒股或者期货就像看病中医一样,通过望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些,很大程度上通过依靠经验和感觉判断来进行操作;量化交易就像西医,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药,定量交易更像是西医,依靠模型判断,模型对于定量投资基金经理的作用就像CT机对于医生的作用。模型对整个市场进行检查和扫描,满足你所编写的程序模型,就会进行处理(下单之类,都是可以自己设置的,看你的模型怎么编写)。 程序化交易越来越被人熟知,使用的人也越来越多,总体来市场会越来越扩大化。 具体的程序化交易程序软件:文化、TB、金字塔等,总的来说金字塔使用起来简单上手,编写的语言不难,而且功能比前两者多。

什么是量化交易未来前景如何知道的讲讲

3,到底什么是量化投资

量化投资就是借助现代统计学、数学的方法,从海量历史数据中寻找能够带来超额收益的多种“大概率”策略,并纪律严明地按照这些策略所构建的数量化模型来指导投资,力求取得稳定的、可持续的、高于平均的超额回报。量化投资属主动投资范畴,本质是定性投资的数量化实践,理论基础均为市场的非有效性或弱有效性。 量化投资特点: 第一,投资视角更广。借助计算机高效、准确地处理海量信息,在全市场寻找更广泛的投资机会。 第二,投资纪律性更强。严格执行数量化投资模型所给出的投资建议,克服人性的弱点。 第三,对历史数据依赖性强。
对于量化投资很多人都不理解,微量网指出其实,就如同中医和西医的区别,中医靠经验,讲究“望、闻、问、切、听”,西医靠指标,通过一系列的检查数据综合判断病情。量化投资无非就是用指标和公式 驱动投资和交易。还是举淘宝的例子,卖家需要考虑安排今年双十一的客服配备和商品物流安排,如果卖家根据去年的经验判断,“中午的时候买家比较多”从而在 中午增倍客服,并预约好物流,这就是定性投资。如果卖家使用云计算对自己去年双十一的销售大数据进行了建模分析,发现“11:25至 12:15,12:45—13:30”的时段交易最活跃,并因此倍增客服、预约物流,这就是微量网量化投资。

到底什么是量化投资

4,量化投资工具是什么

量化投资是一种操作方法或操作理念,与其他各种“非量化”的方法并列。量化也可以采取择时、趋势跟踪、超跌、强弱对冲等等投资模型。区别仅在于,量化投资会使用量化的行情和走势来进行买卖点决策,而不是传统的图形式行情。 量化投资是很广泛的一个概念,可以这么说,只要你不是简单地拍脑袋、或者是听消息进行的投资行为都可以叫量化投资,是不是瞬间没有了高大上的感觉?:) 最常见的,你通过MACD指标顶背离、底背离进行交易,也是量化投资,因为MACD指标是有严格数学公式计算出来的。同样,你根据财务指标选股,构建股票组合也是量化投资,因为你的决策基本是基本面数据; 这些都很“老土”,那么来点新的,通过多因子模型构建投资组合、然后每天用程序进行风险测算并自动调仓,用算法交易完成调仓动作的执行(比如一次性买200万股,总不能一单下去吧),这够“高大上”了吧,前提是你得有一套复杂而完善的系统支持。
大多数人容易把量化投资和高频交易这两个概念混为一谈,实际上前者包含了后者。量化投资是基于量化统计模型的一种投资方法。其核心步骤是将量化模型放回真实的历史数据模拟跑盘,以验证量化模型的有效性。当然,通过计算机,量化投资可以做日内高频交易也可以做日间低频交易,只要是基于量化模型统计的投资方法都是量化投资。你可以去搜一个最近比较流行的app“爱猫爪”,它们就是专业提供股票买卖量化模型的,门槛低,即使是一般的投资者也可以使用。有兴趣的朋友也可以读读丁鹏的《量化投资—策略与技术》了解一些量化投资的基本概念。在量化交易理念方面,推荐科蒂斯.费思的《海龟交易法则》。

5,量化交易主要有哪些经典的策略

量化选股之多因子选股模型 量化择时--双均线(MA)、DMA、TRIX、MACD择时 量化择时--PE择时 还有趋势型,网格型,剥头皮,概率法则,高频交易,神经网络,基因算法
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。  量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。  量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。  量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。  统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。  用于量化研究的软件:我采用的是免费的大型数据库mysql,asp网络编程语言,以及可以设置成网络服务器的旗舰版win7操作系统。
量邦科技资深人士总结:(1)股票、基本面、新闻消息之间的关系不停变化  记得2009年美股到达低点的时候,很多“低质”公司的回报大大高于“优质”公司的回报。很多3块钱的“垃圾股”可以在很短时间内涨到10块钱,而高价的优质公司的股票想要翻一倍都要花上很久很久。而在另一段时间跨度或者另一个市场里,可能又是另一番情景。所以跨市场、长期有效的量化交易系统极少甚至可以说没有。  (2)有些关键信息并不容易量化  微博是市场突发消息和传闻的最大出处,所有投资者都不会无视这里传出的讯息。但是这里的消息格式往往不规范,语法也千奇百怪,你无法让计算机程序挑选出有效信息并运用于自动交易中。  (3)过去并不代表未来  多数时候,通过历史数据测试可以证明的你的设计交易策略在过去的表现,这是量化交易世界中非常重要的一块内容。不过并不是所有人都能意识到,过去不代表未来。这意味着一些交易策略在过去表现的很好,但是在未来可能会带来巨大的亏损
其实要说种类其实很简单,完全可以按照炒股的类型来对策略模型分类,从这个角度来说,认为可以分成技术分析型、价值分析型、机器学习与人工智能。当然了,还有一大类是多因子模型,但是多因子从广义来说其实概念很广泛,任何的技术指标和财务因子都可以作为多因子模型的因子。①技术分析型主要是结合各种技术指标来对动量效应或反转效应做研判交易;时变夏普率的择时策略、情绪择时-GSIS、RSRS指标择时及大小盘轮动②价值分析则偏重股票标的的基本面分析;查尔斯·布兰德斯价值投资法、迈克尔?普莱斯低估价值选股策略、阿梅特·欧卡莫斯集中投资法则③机器学习与人工智能可以算作是区别于前两类一种新兴的方式,主要利用一些统计机器学习算法和神经网络做出预测而量化;基于KMeans的指数择时策略、利用随机森林进行因子选择、基于HMM的指数择时策略供参考!
文章TAG:股票什么量化量化交易股票中什么是量化交易法则

最近更新

相关文章